41 research outputs found

    A Review of Student Difficulties in Upper-Level Quantum Mechanics

    Full text link
    Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different. Here, we review research on student reasoning difficulties in learning upper-level quantum mechanics and research on students' problem-solving and metacognitive skills in these courses. Some of these studies were multi-university investigations. The investigations suggest that there is large diversity in student performance in upper-level quantum mechanics regardless of the university, textbook, or instructor and many students in these courses have not acquired a functional understanding of the fundamental concepts. The nature of reasoning difficulties in learning quantum mechanics is analogous to reasoning difficulties found via research in introductory physics courses. The reasoning difficulties were often due to over-generalizations of concepts learned in one context to another context where they are not directly applicable. Reasoning difficulties in distinguishing between closely related concepts and in making sense of the formalism of quantum mechanics were common. We conclude with a brief summary of the research-based approached that take advantage of research on student difficulties in order to improve teaching and learning of quantum mechanics

    Developing an Interactive Tutorial on a Mach-Zehnder Interferometer with Single Photons

    Full text link
    We are developing a Quantum Interactive Learning Tutorial (QuILT) on a Mach-Zehnder Interferometer with single photons to expose upper-level students in quantum mechanics courses to contemporary applications. The QuILT strives to help students develop the ability to apply fundamental quantum principles to physical situations and explore differences between classical and quantum ideas. The QuILT adapts visualization tools to help students build physical intuition about quantum phenomena and focuses on helping them integrate qualitative and quantitative understanding. We also discuss findings from a preliminary in-class evaluation.Comment: arXiv admin note: substantial text overlap with arXiv:1510.0130

    A Framework for Understanding the Patterns of Student Reasoning Difficulties in Quantum Mechanics

    Full text link
    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics

    Student difficulties with quantum states while translating state vectors in Dirac notation to wave functions in position and momentum representations

    Full text link
    We administered written free-response and multiple-choice questions and conducted individual interviews to investigate the difficulties that upper-level undergraduate and graduate students have with quantum states while translating state vectors in Dirac notation to wave functions in position and momentum representations. We find that students share common difficulties with translating a state vector written in Dirac notation to the wave function in position or momentum representation

    Validation and Administration of a Conceptual Survey on the Formalism and Postulates of Quantum Mechanics

    Full text link
    We developed and validated a conceptual survey that focuses on the formalism and postulates of quantum mechanics covered in upper-level undergraduate quantum mechanics courses. The concepts included in the Quantum Mechanics Formalism and Postulate Survey (QMFPS) focus on Dirac notation, the Hilbert space, state vectors, physical observables and their corresponding Hermitian operators, compatible and incompatible observables, quantum measurement, time-dependence of quantum states and expectation values, and spin angular momenta. Here we describe the validation and administration of the survey, which has been administered to over 400 upper-level undergraduate and graduate students from six institutions. The QMFPS is valid and reliable for use as a low-stakes test to measure the effectiveness of instruction in an undergraduate quantum mechanics course that covers relevant content. The survey can also be used by instructors to identify student understanding of the formalism and postulates of quantum mechanics at the beginning and end of a graduate quantum mechanics course since graduate students are expected to have taken an undergraduate quantum mechanics course that covers the content included in the survey. We found that undergraduate students who engaged with research-validated learning tools performed better than students who did not on the QMFPS after the first semester of a junior/senior level quantum mechanics course. In addition, the performance of graduate students on QMFPS after instruction in the first semester of a core graduate-level quantum mechanics course was significantly better than the performance of undergraduate students at the end of the first semester of an undergraduate quantum mechanics course. A comparison with the base line data on the validated QMFPS presented here can aid instructors in assessing the effectiveness of their instructional approaches

    Student difficulties with determining expectation values in quantum mechanics

    Full text link
    The expectation value of an observable is an important concept in quantum mechanics. However, upper-level undergraduate and graduate students in physics have both conceptual and procedural difficulties when determining the expectation value of physical observables, especially when using Dirac notation. To investigate these difficulties, we administered free-response and multiple-choice questions and conducted individual interviews with students. Here, we discuss the analysis of data on student difficulties when determining the expectation value

    Graduate teaching assistants use different criteria when grading introductory physics vs. quantum mechanics problems

    Full text link
    Physics graduate teaching assistants (TAs) are often responsible for grading. Physics education research suggests that grading practices that place the burden of proof for explicating the problem solving process on students can help them develop problem solving skills and learn physics. However, TAs may not have developed effective grading practices and may grade student solutions in introductory and advanced courses differently. In the context of a TA professional development course, we asked TAs to grade student solutions to introductory physics and quantum mechanics problems and explain why their grading approaches were different or similar in the two contexts. TAs expected and rewarded reasoning more frequently in the QM context. Our findings suggest that these differences may at least partly be due to the TAs not realizing that grading can serve as a formative assessment tool and also not thinking about the difficulty of an introductory physics problem from an introductory physics student's perspective
    corecore